Block bases of the Haar system as complemented subspaces of . . .
نویسندگان
چکیده
It is shown that the span of fa i h i b i e i g n i=1 , where fh i g is the Haar system in L p and fe i g the canonical basis of`p , is well isomorphic to a well complemented subspace of L p ; 2 < p < 1. As a consequence we get that there is a rearrangement of the (initial segments of the) Haar system in L p ; 2 < p < 1, any block basis of which is well isomorphic to a well complemented subspace of L p .
منابع مشابه
Weak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups
Let S be a locally compact foundation semigroup with identity and be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of In this paper, we prove that X is invariantly complemented in if and only if the left ideal of has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...
متن کاملNumerical Solution of Fractional Control System by Haar-wavelet Operational Matrix Method
In recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. The following method is based on vector forms of Haar-wavelet functions. In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet operational matrices of the fractional order integration. Also the Haar-wavelet operational matrices of ...
متن کاملAPPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...
متن کاملHaar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کامل